بهبود سیستم های تشخیص نفوذ باکاهش ویژگی مبتنی بر الگوریتم ژنتیک و تکنیک‌های داده‌کاوی

Authors

Abstract:

امروزه سیستم های کامپیوتری مبتنی بر شبکه، نقش حیاتی در جامعه مدرن امروزی دارند و به همین علت ممکن است هدف دشمنی و یا نفوذ قرار گیرند. به منظور ایجاد امنیت کامل در یک سیستم کامپیوتری متصل به شبکه، استفاده از دیوار آتش و سایر مکانیزم های جلوگیری از نفوذ همیشه کافی نیست و این نیاز احساس می شود تا از سیستم های دیگری به نام سیستم های تشخیص نفوذ استفاده شود. سیستم تشخیص نفوذرا می توان مجموعه ای از ابزارها، روش ها و مدارکی در نظر گرفت که به شناسایی، تعیین و گزارش فعالیت های غیرمجاز یا تائید نشده تحت شبکه، کمک میکند. سیستم های تشخیص نفوذ به صورت سیستم های نرم افزاری و سخت افزاری ایجاد شده و هر کدام مزایا و معایب خاص خود را دارند. به دلیل وجود مشخصه های زیاد در داده های مربوط به سیستم های تشخیص نفوذ در این تحقیق ما مشخصه های مطلوب و موثر را با استفاده از الگوریتم ژنتیک بهبود یافته انتخاب می کنیم. سپس با استفاده از تکنیک های داده کاوی استاندارد، مدلی برای طبقه بندی داده ها ارائه می دهیم. برای ارزیابی عملکرد روش پیشنهادی از پایگاه داده NSL-KDD که  نسبت به سایر داده های تشخیص نفوذ از رکوردهای واقعی تری برخورد دار است، استفاده خواهیم کرد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

استخراج ویژگی ترکیبی مبتنی بر ژنتیک دودویی جهت بهبود عملکرد تشخیص در سیستم‌های بازشناسی عنبیه

سامانه تشخیص عنبیه از چند مرحله تشکیل‌شده، که یکی از مهم‌ترین مراحل آن استخراج ویژگی است. اکثر سامانه‌های موجود از یک روش خاص جهت استخراج ویژگی استفاده می‌کنند. در راستای ایجاد بهبودِ عملکردِ سامانه از الگوریتم ژنتیک دودویی با استفاده از یک معیار برازندگی جدید جهت یافتن روش استخراج ویژگی ترکیبی بهره گرفتیم. روش پیشنهادی از تعداد زیادی فیلتر و تبدیل که در استخراج ویژگی از عنبیه کاربرد فراوانی دارن...

full text

بهبود شناسایی تغییرات در مناطق شهری با انتخاب ویژگی های طیفی و مکانی بهینه مبتنی بر الگوریتم ژنتیک

آنالیز تصاویر چندزمانه سنجش‌از دور، تکنیک کارآمدی برای شناسایی تغییرات کاربری و پوشش اراضی در مناطق شهری می‌باشد. جدا از تکنیک بکار رفته برای شناسایی تغییرات،فضای ویژگی تأثیر بسیار زیادی در صحت نتایج دارد. حصول نتایج رضایت‌بخش در شناسایی تغییرات مناطق شهری، مستلزم بکارگیری ویژگی‏ های طی...

full text

ارائه یک روش یادگیری ویژگی ترکیبی مبتنی بر الگوریتم شبیه‌سازی تبرید و برنامه‌نویسی ژنتیک (مطالعه موردی: تشخیص بدخیمی سرطان سینه)

امروزه استفاده از ابزارهای یادگیری ماشین در حوزه‌های مختلف ازجمله تشخیص بیماری‌ها در حال گسترش است. علت این امر را می‌توان عملکرد متغیر و متمایل به خطای انسان در مقابل عملکرد ثابت ابزارهای یادگیری ماشین در زمینه تشخیص و طبقه‌بندی دانست. حیاتی بودن تشخیص در حوزه‌هایی مانند پزشکی، نیاز به بهبود تشخیص با روش‌های یادگیری ماشین را توجیه می‌کند. ازجمله روش‌های افزایش دقت در این زمینه، الگوریتم‌های کا...

full text

بهبود شناسایی تغییرات در مناطق شهری با انتخاب ویژگی های طیفی و مکانی بهینه مبتنی بر الگوریتم ژنتیک

آنالیز تصاویر چندزمانه سنجش از دور، تکنیک کارآمدی برای شناسایی تغییرات کاربری و پوشش اراضی در مناطق شهری می باشد. جدا از تکنیک بکار رفته برای شناسایی تغییرات،فضای ویژگی تأثیر بسیار زیادی در صحت نتایج دارد. حصول نتایج رضایت بخش در شناسایی تغییرات مناطق شهری، مستلزم بکارگیری ویژگی‏ های طیفی و مکانی (بافت) بهینه می‏ باشد. اگرچه جستجوی سراسری تنها تضمین دست یابی به مجموعه ویژگی های بهینه است، ولی د...

full text

تخصیص منابع در شبکه های WiMAX مبتنی بر OFDMA برای سیستم های IPTV با استفاده از الگوریتم ژنتیک

چکیده: تخصیص پهنای باند در استاندارد IEEE 802.16، به­صورت اختصاص بلوک­های دوبعدی در محدوده زمان و فرکانس (که burstنامیده می­شوند) به کاربران، تعریف می­گردد. تخصیص منابع برای کارایی سیستم حیاتی است اما جزئیات آن در استانداردهای IEEE802.16 تعریف نشده و بر عهده پیاده‌سازی کننده گذاشته شده است. الگوریتم­های زیادی برای این منظور در شبکه­های مبتنی بر OFDMAارائه شده­اند. در این مقاله، یک الگوریتم ژنتی...

full text

دو روش تبدیل ویژگی مبتنی بر الگوریتم های ژنتیک برای کاهش خطای دسته بندی ماشین بردار پشتیبان

Discriminative methods are used for increasing pattern recognition and classification accuracy. These methods can be used as discriminant transformations applied to features or they can be used as discriminative learning algorithms for the classifiers. Usually, discriminative transformations criteria are different from the criteria of  discriminant classifiers training or  their error. In this ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 32

pages  1- 13

publication date 2019-07-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023